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Abstract

Numerical formulations of density functional theories for inhomogeneous fluids
(Fluid-DFTs) require the solution of large systems of equations with many degrees
of freedom (DOFs) per node on a computational grid. Historically solvers for these
problems have used simple Picard iterations across DOFs or, more recently, fully-
coupled general algebraic techniques.

In this paper we look at Fluid-DFTs from a fresh perspective, retaining a fully-
coupled formulation but segregating variables for the purposed of introducing Schur
complement formulations and specialized preconditioners. By viewing Fluid-DFTs
from this perspective, we develop a mathematical framework and a collection of so-
lution algorithms that have a dramatic impact on the robustness, performance and
scalability of the implicit equations generated by Fluid-DFTs.
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A Schur Complement Based
Approach to Solving Density

Functional Theories for
Inhomogeneous Fluids on Parallel

Computers

1 Introduction

Multiple degrees of freedom (DOFs) per node properties are common to many numerical
applications. Segregated solvers, which attempt to view each DOF across the grid as a
sub-problem within the larger fully-coupled problem, have been successfully used in many
problem domains. Similarly Schur complement methods, which formally eliminate vari-
ables by block Gaussian elimination can reduce the complexity and cost of solution. In
this paper we present a combination of these two classes of algorithms applied to Density
Functional Theories for inhomogeneous fluids (Fluid-DFTs). We will show that viewing
Fluid-DFTs from a segregated variable perspective yields a rich structure that can be ex-
ploited in the development of robust, scalable solution methods.

Density functional theories (DFTs) have been tremendously successful in treating a va-
riety of systems at many length scales. In all cases, the fundamental problem is to predict
the structure of an inhomogeneous fluid as captured by a density distribution, ρ(r) [39]. At
the smallest length scale the most well known application of DFT is to predict the struc-
ture of quantum mechanical systems [26]. These quantum mechanical DFTs (QM-DFTs)
are used to predict the structure of an electron fluid in an external field produced by fixed
nuclei. Using a similar mathematical construct but with non-exact density functionals [16],
the structure of atomic [27, 28], molecular [21, 1], and polymer fluids [3, 40, 41, 36]
can be computed. Fluid inhomogeneities can result from surfaces (e.g. planar inter-
faces, porous materials, or large geometrically complex macromolecules [13, 38, 24, 12])
or from competing intramolecular and intermolecular interactions that can lead to self-
assembly [15, 9, 22]. Mesoscale-DFTs have also been developed for colloidal fluids and
biological macromolecules [5, 6]. These mesoscale-DFTs are very similar to Fluids-DFTs,
but are based on coarsened models or potentials (e.g. the solvent averaged Yukawa poten-
tial).

Our previous efforts to develop numerical methods for Fluids-DFT began with the de-
velopment of a Newton’s method real space approach that could be solved using parallel
iterative solvers optimized for large distributed memory parallel computers[10, 11, 13].
While this code was robust and in fact applied to a variety of systems of unprecedented
complexity, it was still too computationally intensive to allow for routine calculation on
3-dimensional systems. Given those limitations, we then developed a matrix free method
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with fast Fourier transforms (FFTs) to compute certain convolutions in the theory[33]. This
approach led to a code that could be applied to 3-dimensional problems using very modest
computer resources (single processor workstations). However the FFTs limit the applica-
tion space of the DFTs to cases with periodic boundary conditions, and since no matrix
is stored, matrix based preconditioning methods cannot be applied to converge difficult
nonlinear problems.

In the remainder of this paper we present a new approach to solving Fluid-DFTs using a
real space method based on segregated Schur complement techniques and demonstrate the
impact of this approach on our ability to solve large, complex problems. Section 2 presents
the general mathematical framework of fluids-DFTs. Sections 3 discusses the complexities
of the discrete formulation of DFTs with a focus on properties that can be exploited in the
design of optimal algorithms. Section 4 contains a discussion of our new block equation
framework, and section 5 discusses the block framework for two particular fluid-DFTs.
Section 6 presents results for our new solver algorithms, comparing timing and robustness
to our previous approaches. We find that the new method is a considerable improvement
over generic methods developed for PDEs.

2 General Mathematical Framework

In Fluid-DFTs a free energy functional, Ω, depends on a set of critical fields, ψ, in the
problem of interest, Ω[{ψi(r})]. The minimization of this free energy with respect to all
fields results in a system of residual equations to be solved. Generally any of these residual
equations can be written

δΩ

δψi
= 0 = I(ψ(r))+D(ψ(r))+F(ψ(r)) (1)

where I is a general integral operator, D is a general differential operator, and F is some
function of the fields involving neither integral or differential operators. For example a
problem with a charged atomistic fluid model will have two critical fields, the fluid density
and the electrostatic potential. The minimization of free energy with respect to the density
leads to an Euler-Lagrange equation. The minimization of the free energy with respect to
the electrostatic potential leads to Poisson’s equation. These two equations must be solved
as a coupled set to find the distribution of a charged fluid near an interface of interest.

In many cases, some contributions to the free energy functionals are not local. Rather,
the free energies are written as functionals of both the critical fields and some nonlocal
variables, n with Ω[ψ,{nγ[ψ]}]. The nonlocal variables are themselves functionals of the
critical fields of interest. If the free energy functional contains an integral operator term,

ΩI[{nγ[ψ]}] =
Z

G(n)dr (2)
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dependent on these nonlocal variables, the corresponding contribution to Eq. 1 will be

δΩI

δψi(r)
=

Z
∑
γ

∂G
∂nγ

(r′)
δn(r′)
δψi(r)

dr′. (3)

While the free energy minimization is always defined by the general expression in Eq.1,
the formulation of the matrix problem may proceed in two ways [10].

The first approach is to consider a solution vector that contains only the critical vari-
ables. The Jacobian (or really Hessian) used in the matrix problem is then

Ji j(r,r′) =
δ2Ω

δψi(r)δψ j(r′)
=

Z
∑
ε

∑
γ

∂2G
∂nγ∂nε

(r′′)
δn(r′′)
δψi(r)

δn(r′′)
δψ j(r′)

dr′′. (4)

Often these nonlocal variables are simple linear functionals of the critical fields defined
as

n(r) =
Z

w(r,r′)ψ(r′)dr′ (5)

with w(r,r′) = δ(|r− r′|−R) or w(r,r′) = θ(|r− r′|−R). where R is some characteristic
dimension (a particle size or a bond length). The Jacobian can then be written

Ji j(r,r′) =
δ2Ω

δψi(r)δψ j(r′)
=

Z
∑
ε

∑
γ

∂2G
∂nγ∂nε

(r′′)wγ(r′′,r)wε(r′′,r′)dr′′. (6)

Clearly in order to compute a Jacobian entry with this structure will require a second
order (N2) operation in order to locate the intersection of the weight functions wγ(r′′,r)
and wε(r′′,r′). In some Fluids-DFTs the definition of nonlocal variables can be even more
complex resulting in multiple integrals for each Jacobian entry. In real space, this approach
leads to matrix coefficient calculations that range from time consuming to completely im-
practical.

One solution is to pursue an FFT treatment of convolutions [33]. Another approach is
to formulate the real space matrix problem in terms of not only the critical fields, ψ but also
all of the nonlocal density variable, n [10]. This approach is akin to the transformation of a
higher order PDE to a system of first order PDEs by introduction of additional variables in
the problem. While we had implemented this approach some time ago, it is the current work
presented here that demonstrates the power of this approach both for reducing complexity
of many variants of DFT, and for leveraging segregated modeling strategies to solve DFTs
efficiently. Taking a case where the only critical field is the density ρ and where there are
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linear nonlocal density variables as defined above, the contributions of the nonlocal free
energy term to the extended matrix problem written in block form is

[
−I wγ(r,r′)

∑γ
∂2G

∂nγ∂nε
(r) 0

][
∆nγ

∆ρ̄

]
= −

[
RNL(r)
REL(r)

]
, (7)

where r is a row of the matrix, r′ is a column of the matrix, RNL is the residual for the
equation that defines n (Eq.5), and REL is the residual of the Euler-Lagrange equation
(Eq.3). Note that there are no integrals in the Jacobian, and so the complexity of filling the
matrix has been considerably reduced. We will refer to Eq. 7 as the first order formulation
of Fluid-DFTs. In contrast Eq. 6 is an example of a higher-order formulation.

Of course there can be many more terms defining the free energy functional that must
also be considered. However, we find Fluid-DFTs can very often be formulated using a
2× 2 block matrix motif where all nonlocal ancillary variables (and their variations with
one another and the fields) are defined in the top part of the matrix, and where the critical
variables are defined in the lower part of the matrix. The result is often a very simple A11
block which can be exploited for fast computations as we demonstrate below.

3 Discrete Formulations

As was mentioned in the introductory section, we have previously developed a code for
solving Fluid-DFTs on large distributed memory computers. That code was based on a
discretization using a uniform structured grid so that the numerical integration stencils for
all spatial integrals could be pre-computed on a reference grid and then applied anywhere
on the grid [7, 8]. Linear interpolation was used for the critical fields between the mesh
points, and the equations were discretized using collocation at the mesh points.

The discretized equations were previously solved using a fully-coupled Newton method
with an analytic Jacobian and algebraic preconditioned Krylov methods. Convergence with
these methods is much improved over Picard iteration reducing nonlinear iterations from
O(100− 1000) to O(10). However, these linear solvers were designed for PDE applica-
tions, and are far from optimal for Fluid-DFTs. They sometimes require very expensive
preconditioners in order to converge. As a concrete example of the failure of the PDE
solvers, we have previously documented that while the extended variable formulation of
the matrix problem reduces the complexity of the fill, the overall performance of the code
was not greatly impacted because the solves of these larger more extended systems was
more difficult from a solver perspective [10].

The ineffectiveness of these algorithms stems primarily from the fact that the systems
of equations are very dissimilar to PDEs. Key properties of the Fluid-DFTs systems of
equations when compared to PDEs that lead to failure of standard algorithms are:
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Figure 1. Stencil support for two mesh densities for integrating
the area of the circle. As the mesh is refined, the stencil density
increases. This corresponds to more expensive computation of the
integrals and more nonzeroes per row of the Jacobian matrix.

1. Inter-physics vs. Inter-nodal Coupling: While PDEs have a strong spatial coupling
where the equation for a given variable at a given discrete mesh node involves in-
teraction with the same variable at nearby nodes, Fluid-DFTs may have remarkably
little of this kind of coupling1.

2. Stencil Support as a Function of Physical Parameter: Unlike PDEs, whose stencils
are typically independent of mesh node spacing (e.g., 9 point FEM stencil in 2D), the
stencils in Fluid-DFTs are determined by some characteristic physical parameter in
the system (e.g bead size, bond length). As the mesh is refined, more nodes fall within
the range of the integral, and higher fidelity simulations result in larger problem
dimensions and many more nonzeroes per matrix row (see Figure 1).

3. Large number of DOFs per Node: Most PDE problems have just a handful of de-
grees of freedom (DOFs) in the global system (with the exception of reacting flow
problems). First order formulations of Fluid-DFTs, on the other hand, typically have
more than 10 DOFs per node and may have 50 or more. Furthermore, the stencils for
each DOF can vary greatly in range and complexity.

Since standard algebraic preconditioners, including multi-level methods, incomplete
factorizations and relaxation methods all have a bias toward inter-nodal coupling, these
methods may all miss the mark. Similarly, load balancing tools largely have the same bias,
and will need to be revisited for Fluid-DFTs. The scaling of stencils with mesh density in
Fluid-DFTs suggests that standard preconditioners, sparse matrix computations and com-
munication patterns become increasingly inappropriate as mesh fidelity increases. Thus
it is critical that a general framework be developed that is more suitable to Fluid-DFTs.
Because there are a wide variety of Fluid-DFTs in current use in the physics community
(various methods for similar fluids, and a wide range of fluids from atomistic neutral parti-
cles to polarizable polymers), the framework must be quite flexible and general. We present
our current efforts to develop such a framework in Section 4.

1Exceptions to this property occur when differential operators are part of the system of Euler-Lagrange
equations as with charged fluids[34, 13] or diffusing fluids[14]
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4 A New Block Matrix Formulation and Solution Method

The basic framework for all of our solver algorithms reflects the importance of inter-physics
coupling in the first order formulation of the Fluid-DFTs described in Section 2. This
physics coupling led us to a physics-based block matrix formulation in order to partition
critical and nonlocal ancillary variables. The idea is to partition the data into blocks that
can be optimally managed or solved. The general 2×2 block matrix is



A11
11 · · · A1 j

11 A1, j+1
12 · · · A1k

12
... . . . ...

... . . . ...
A j1

11 · · · A j j
11 A j1

11 · · · A j j
11

A j+1,1
21 · · · A j+1, j

21 A j+1, j+1
22 · · · A j+1,k

22
... . . . ...

... . . . ...
Ak1

21 · · · Ak j
21 Ak, j+1

22 · · · Akk
22





x1
1
...

x j
1

x j+1
2
...

xk
2


=



b1
1
...

b j
1

b j+1
2
...

bk
2


(8)

where k is the number of DOFs tracked per node. The superscript (p,q) denotes the block
of coefficients generated by DOF p interactions with DOF q. The subscripts and partition
lines impose a coarser partitioning of the matrix into a 2-by-2 block system that will be
used with a Schur complement approach. We denote by A11, A12, A21 and A22 the upper
left, upper right, lower left and lower right submatrix of the coarse 2-by-2 block matrix,
respectively. Similarly x1 and x2, and b1 and b2 are the upper and lower parts of x and b,
respectively.

Given this two-level structure, the basic strategy for solving each global linear system
generated by Newton’s method is as follows:

1. Identify and reorder DOFs 1 through j such that A−1
11 (the inverse of A11) is easy

to apply (in parallel). The details of this step are given in Sections 5.1 and 5.2 for
hard-sphere and polymer problems, respectively.

2. Determine a preconditioner P for S = A22 −A21A−1
11 A12, the Schur complement of A

with respect to A22. (See Saad [30] for an overview of Schur complement methods.)

3. Solve Sx2 = (b2 −A21A−1
11 b1) using a preconditioned Krylov method such as GM-

RES, with preconditioner P. Note that S may or may not be explicitly formed, de-
pending on other problem details.

4. Finally, solve for x1 = A−1
11 (b1 −A12x2).

The attractive properties of this algorithm from a parallel computing perspective are as
follows:
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1. A−1
11 can often be applied as a matrix-vector multiplication, or sequence of such. In

other cases, A−1
11 can be explicitly computed. This means that explicitly forming S,

or applying it implicitly is very efficient in parallel.

2. The dimension of S is often a small fraction of the original matrix. Thus, iterative
methods such as GMRES will typically converge much faster because of the reduced
dimension, independent of other factors such as preconditioning.

3. Assuming nodes of the mesh are equally partitioned on the parallel machine, parallel
execution of this solver is well-balanced and produces identical results, independent
of number of processors, up to roundoff error.

5 The new solver applied to two Fluid-DFTs

We now describe this approach in the context of two different kinds of Fluid-DFTs. The
physics description for these two models are included in Appendix A. Here we focus on the
structure of the matrices, implications for formulating the Schur complement, and suitable
preconditioners.

5.1 Hard-spheres

A hard-sphere fluid is the simplest type of fluid model that is of practical interest (see Ap-
pendix A.1). In a first order numerical formulation, these problems typically have one or
more density unknowns (the critical fields), and a set of linear auxiliary variables referred
to as non-local densities (see Eq. 5). In our block matrix formulation, the equations corre-
sponding to the density unknowns (i.e. the Euler-Lagrange equations) are collected in the
lower portion of the matrix (densities are the x2 variables). The non-local density equations
are collected in the top portion of the matrix (nonlocal densities are the x1 variables).

In the particular case of the Rosenfeld functionals applied to a single component fluid,
some of the non-local densities are trivially dependent on others with

nγ(r) = Cnε(r). (9)

where C is a constant.

If all of the nonlocal densities are all treated as independent variables, there are Nnld =
4 + 2 ∗D nonlocal densities per node in the problem where D is the physical dimension
(1, 2, or 3) of the problem of interest. In this case, the A11 block (which is composed of
non-local density interactions only) is

A11 = I. (10)
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In this case, the inverse of A11 is obviously trivial.

However, for the special case of a single component fluid, we generally encode the lin-
ear dependency in Eq.9. This leaves Nnld = 2+D variables that are described by integration
stencils (nonzeros in the A12 block). We further decompose the A11 block in this case into
a 2-by-2 block matrix as follows. The non-local density variables that have no dependence
on other non-local densities are put in the upper left block. The lower right block contains
all others, which have a dependence only on variables in the first block. The A11 block is
then

A11 =
(

−I 0
X −I

)
. (11)

where X contains the various proportionality constants, C, in the problem of interest. It is
immediately clear from this expression of A11 that the inverse is simply

A−1
11 =

(
−I 0
−X −I

)
. (12)

Clearly the simple form of A−1
11 allows it to be explicitly applied in a matrix-vector

multiply for an efficient calculation of S. Very simple preconditioners for S (e.g. Jacobi
scaling based on the diagonal of A22) work well to solve hard sphere systems. Using this
approach we have seen scalable results for 1, 2 and 3D problems. Section 6 provides the
details.

5.2 Polymer Problems

Polymer and molecular Fluids-DFTs that include a deterministic treatment of chain con-
formations come in several varieties [3, 35, 23, 2]2. However, they can all be characterized
again as a combined system of equations where the critical field variables and nonlocal
ancillary variables. With the chain structure equations playing the role of the nonlocal an-
cillary variables. To be more specific we consider the Chandler-McCoy-Singer DFT [3]
(CMS-DFT) as it is enumerated in Appendix A.2. In this case, the critical variables, ρ(r)
and U(r) are the densities and an unknown mean field respectively. The polymer confor-
mation information is described by the Green’s function propagator equations, G(r) and
Ginv(r). The structure of these equations is quite different from the nonlocal densities of
the hard sphere problem as they are significantly coupled to one another through a recursive
relationship (see Equations 22 and 23 in Appendix A.2).

2Note that another approach takes chain conformations from a large number of samples generated with
molecular simulations [40, 25]
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In our new method, the A11 block is composed of these propagator equations, and when
properly ordered, A11 takes the block form

A11 =


A11

11 0 0 0
A21

11 A22
11 0 0

... . . . . . . ...
A j1

11 · · · A j−1, j
11 A j j

11

 . (13)

where j is two times the length of the polymer chain in the model and each Aii
11 is diagonal.

Because each Apq
11 is distributed across the parallel machine proportionally to the nodes,

and because each Aii
11 is diagonal, applying A−1

11 is a sequence of j diagonal scalings and
matrix multiplications. Although A−1

11 cannot be explicitly formed for polymers, we still
retain sufficient parallelism to get excellent performance on distributed memory computers
and application of A−1

11 is invariant under changes in processor count up to round-off error.

The preconditioner P for polymer problems is more challenging than for hard-spheres.
The A22 block for polymers has the following form:

A22 =
(

D11 F
D21 D22

)
. (14)

The first block of equations in A22 is associated with the unknown fields, U(r) (Equa-
tion 21), and the second block with the primitive densities, ρ(r) (Equation 20). Each of
the Dpq blocks is diagonal, whereas the F matrix describes the dependence of the unknown
field, U(r), on the primitive densities. The F block is by far the most dense submatrix in
the global matrix due to the range of attractions that apply to integrals over the direct cor-
relation function (see Equation 21). As mentioned in Section 3, the density of F increases
dramatically with mesh refinement. Also, for the purposes of communicating off-processor
values in a distributed memory implementation of the solver, F will have a large overlap
and will require the most attention to assure good parallel communication complexity. It is
worth noting that F is the only submatrix block that has these unusual stencil characteris-
tics. It is also worth noting that the values in F do not change between nonlinear iterations.

One final observation is needed to motivate our preconditioner: All values in A22 are
O(1) except the values in D21, which are O(10−10). In other words, the primitive densities
have a very weak direct dependence on the unknown fields, U(r). We take advantage of
this by defining an approximation to A22 as:

A22 ≈ ˜A22 =
(

D11 F
0 D22

)
. (15)

We then define a preconditioner P for S that consists of a block Gauss-Seidel (one back-
solve) to ˜A22. Given that D22 and D11 are diagonal and well-distributed and that F is also
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distributed, applying P involves two diagonal scalings, using D22 and D11, and a matrix-
vector multiplication using F . All of these steps are very efficient in parallel. Thus, we once
again have an effective parallel solver whose results are invariant under changes to proces-
sor count, up to round-off error. This algorithm for CMS-DFT for polymers has similar
attractive features as the hard-sphere solver, except that A−1

11 cannot easily be explicitly
formed.

One additional benefit is that the solver can efficiently handle very long polymer chains,
since the chain length only increased the dimension of A11, which has a modest impact on
the performance and robustness of the solver. We note that previous approaches to solving
polymer problems typically required a fairly high level of fill incomplete factorization to
solve the linear system of equations. Our new solver requires almost no additional memory
for the preconditioner. This reduces the memory requirement for the solver by at least a
factor of two, often a factor of 4 or more.

6 Computational Results

In this section, we show results for several cases where the numerical problem is either
a 2-dimensional problem (with one uniform dimension) or a full 3 dimensional problem.
We compare a solution via (i) a generic global solver that attempts to solve all equations
simultaneously in a single matrix via standard preconditioned Krylov methods and (ii)
the new solvers described in Sections 4 and 5. Overall the improvements due to the new
algorithmic framework are dramatic, resulting in several to ten times improvement, as well
as making some large problems tractable. All results were generated on the Sandia system
red squall, a 258-node, dual processor Opteron-based system ( 2.2 GHz processors with 4
GB memory per node) using a Quadrics Elan4 high-speed interconnect.

6.1 Solver Approaches

All of the results presented here are from the Fluid-DFT application Tramonto [10]. Tra-
monto is a parallel, distributed memory application that solves Fluid-DFT problems using
real-space techniques. Early versions of Tramonto used general-purpose preconditioned
Krylov solvers from the solver package Aztec [37]. Presently Tramonto has been re-
designed to utilize the Trilinos solver framework, a large collection of solver packages
and parallel linear algebra tools [17, 20].

In this section we use the term old solver to refer to a general-purpose preconditioned
Krylov solver applied to the full linear system of equations ordered as described in Equa-
tion 8. We use an overlapping Schwarz preconditioner with ILUT [29] as the local sub-
domain solver via the Trilinos package IFPACK [32]. We use non-restarted GMRES [31]
from the Trilinos package AztecOO [19] as the iterative method. One should note that,
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even though we refer to this solver as old, it is accessing solver capabilities from Trili-
nos and is already an improvement over the Aztec solvers previously used in Tramonto,
since Trilinos performance is generally better than Aztec and also because the ordering of
equations has changed from a node-first ordering to a DOF-first ordering. This is the same
global ordering as we use for the new solvers and results in very favorable ILUT fill and
robustness properties for the general-purpose solver.

The new solvers discussed here also refer to preconditioned Krylov methods. However,
we now use our segregated preconditioners and apply GMRES to the Schur complement
system. All preconditioners for the new solvers are constructed and applied using the ma-
trix and vector classes in the Trilinos package Epetra [18]. Due to the number of DOFs and
the sequencing requirements to apply A−1

11 , the new solver preconditioners are composed
of between several and more than 100 Epetra distributed sparse matrices. The new solvers
also use GMRES from AztecOO.

6.2 Hard sphere fluids in 2-dimensions

This problem considers an inhomogeneous fluid where there are three cylindrical rod sur-
faces in the domain. This problem is similar to systems studied extensively previously in a
study on adsorption in disordered porous media[12]. Since the solution is uniform perpen-
dicular to the rods, the numerical problem may be solved in 2-dimensions (with the third
dimension treated analytically). Figure 2 shows the density profile we compute for this
case. The computational domain is 10σ×10σ in size where σ is the diameter of the fluid
particles. Periodic boundary conditions were applied in this calculation. The bulk fluid
density was ρσ3 = 0.75. The three rods were all quite small with diameters of 2R = 0.5σ

and were located at (x/σ,y/σ) = (5,5),(1,9),(7,6). Volume exclusion interactions define
the rod-fluid interactions, and the corresponding discontinuity in the external field is found
at a distance R+0.5σ from the center of the cylinders.

Table 1 compares the new solvers to a standard preconditioned Krylov method. In this
case the latter was solved using an ILUT preconditioner with 2 levels of fill-in. Solves were
first attempted with no preconditioning and with an ILU preconditioner. Neither were able
to solve the linear problem in less than 100 iterations. As is apparent from the table the
chosen preconditioner is identical to the new algorithm in nonlinear updates, and is similar
in the linear solver iteration count. The table shows both parallel scaling and scaling with
mesh refinement at a fixed number of processors.

These results clearly demonstrate that the new method is quite powerful particularly
for smaller numbers of processors. We achieve increased performance with the new algo-
rithms, and the decrease in solve time is on the order of one to two orders of magnitude.
Using the solve time data in the second part of the table (excluding data at ∆x = 0.2σ) we
find that the scaling of the old code with mesh refinement is T ∝ N2.7. while the new code
has T ∝ N2.0.
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#Procs <# Lin iters> Time/Niter T1Proc/T Told/Tnew
Old New Old New (New)

1 8 22 495.1 14.7 1 33.8
2 10 22 148.7 8.5 1.7 17.5
4 11 22 47.4 4.2 3.5 11.3
8 12 22 16.1 2.1 6.9 7.6

16 13 22 6.3 1.1 13.3 5.7
32 15 22 2.1 0.6 24.8 3.6
64 18 22 1.1 0.3 43.1 3.2
∆x <# Lin iters> Time/Niter T/T∆x=0.2 Told/Tnew

Old New Old New (New)
σ/5 12 17 0.1 0.07 1 1.4

σ/10 18 22 1.1 0.3 5 3.4
σ/20 18 24 32.1 4.7 69.4 6.8
σ/40 - 24 - 82.0 1206 -

Table 1. Results for a 2D Hard sphere test problem. Note that
every run in the table solved with 10 nonlinear iterations. In the
top part of the table, the columns are: the number of processors
used for the calculation, the average number of linear iterations
per nonlinear iteration, the solve time per nonlinear iteration, the
speedup relative to the single processor time, and the ratio of solve
times from the old to the new algorithm. In the bottom part of
the table we consider scaling with mesh density. The first column
contains the mesh spacing, and the 6th column contain timings
relative to the ∆x = σ/5 result. All data in the lower part of the
table were generated on 64 processors. All data in the upper part
of the table were generated with a mesh spacing of ∆x = σ/10.
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Figure 2. Fluid density (ρσ3) distribution in the vicinity of 3
nanocylinders.

6.3 3D Hard spheres

This problem considers a hard sphere fluid in a nanotube of finite length where the nanotube
is located in a planar surface (or membrane). This particular choice is the base case for
studies on ion channel proteins [13]. Specifically, the domain is of size 18σ× 6σ× 6σ

with the long axis of the nanotube in the x dimension. The diameter of the nanotube is
2.5σ. The length of the nanotube is 10σ. The computational domain has bulk boundary
conditions in the x dimension and continuation boundary conditions in the y and z. In the
latter case, when performing integrals we assume that the density profile at the edge of
the computational domain persists and is constant beyond the boundary. This boundary
condition isolates this particular nanotube in a membrane. The bulk fluid density is again
set to be ρbσ3 = 0.75 for studies on parallel performance, but is reduced to ρbσ3 = 0.6 for
the mesh refinement studies as the system of equations becomes difficult converge at the
higher density for the most refined mesh. Figure 3 shows the density profile for one slice
(at z = 3σ) in the computational domain.

Performance results are presented in Table 2. Overall the results are very similar to the
2D problem of the previous section. The new algorithm improves on the performance of the
old algorithm (ILUT preconditioner with 2 levels of fill) by up to 18 times for measurable
cases. The problems are also amenable to much smaller parallel platforms and a more
refined mesh with the new algorithms. These improvements can be attributed to reduced
memory requirements of these algorithms. The scaling with mesh density for this problem
using the new algorithm is T ∝ N1.65. For the old algorithm we find T ∝ N2.2.
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#Procs Niter <# Lin iters> Time/Niter T4Proc/T Told/Tnew
Old New Old New (New)

4 11 - - - 117.4 1 -
8 11 - 76 - 61.0 1.9 -

16 11 53* 76 544*(6) 29.8 3.9 18.*
32 11 73 76 154.5 16.7 7.0 9.3
64 11 80 76 55.4 8.3 14.1 6.7

128 11 89 76 19.9 4.7 24.8 4.2
∆x Niter <# Lin iters> Time/Niter T/T∆x=0.2 Told/Tnew

Old New Old New (New)
σ/5 7 45 44 17.2 4.1 1 4.1
σ/7 8 51 49 150.5 18.9 4.6 8.0

σ/10 9 - 51 - 121.1 29.3 -

Table 2. Results for a 3D Hard sphere test problem. The second
column now contains the number of nonlinear iterations needed to
solve the problem. For a description of all other columns see the
table 1 caption. All data in the upper part of the table were gen-
erated with a mesh spacing of ∆x = σ/5, and with a bulk density
of ρσ3 = 0.75. All data in the lower part of the table were gener-
ated on 128 processors with a bulk density of ρσ3 = 0.6. The data
with an * indicates that complete convergence was not obtained
and timings are extrapolated based on the number of completed
nonlinear iterations in the parenthesis.
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Figure 3. Fluid density (ρσ3) distribution for a hard sphere fluid
in a finite length nanopore.

6.4 2D Polymer

Next we consider a 2-dimensional system based on the CMS polymer DFT presented in
Appendix A.2. We consider a homopolymer where there are 10 identical beads on the
chain and the size of each segment is σ. There are a pair of infinite cylinders in the problem
(diameter 2σ), and we solve for the polymer distribution around these nanocylinders. Both
polymer bead interactions and polymer-surface interactions are purely repulsive as defined
by volume exclusions. A series of these calculations at different separations could be per-
formed to compute the force between the cylinders as a function of distance. Performance
studies had a computational domain of size 7σ×9σ. The initial guess was a uniform solu-
tion at the bulk site type density of ρσ3 = 0.85. Figure 4 shows the solution we obtain for
this problem.
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Figure 4. Density (ρσ3) distribution for a 10-mer homopolymer
near two nanocylinders. The computational domain was 1/4 of this
image with reflective boundaries at x = 0 and y = 0.
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Performance results for this 2D polymer test problem are shown in Table 3. We find
very similar behavior to the atomic fluids cases presented in the previous examples with
up to a 25 fold improvement in performance. Again the ”old” method was solved using an
ILUT preconditioner with 2 levels of fill. While both methods become more expensive as
the polymer chain length increases, we find this to be approximately a linear effect for the
new algorithms while a steeper performance penalty occurs for the generic methods.

6.5 3D Polymer

Finally we consider a 3-dimensional system where a self-assembled lipid bilayer is sand-
wiched between two planar arrays of spheres of diameter 9σ separated by 10σ in a square
lattice. The particular chemical model we consider has two components. The first is a
model lipid molecule with head group and tail group beads. There are two head group
beads on a chain, and 16 tail group beads on a linear chain. The head groups are in the
middle so we have an 8-2-8 morphology on the chain. The head group beads are larger
than the tail group beads with σh/σt = 1.44. The second component in the system is a sin-
gle site solvent of the same size as the tail beads. The interactions between various species
are chosen to favor self-assembly of a lipid bilayer where the head groups form an inter-
face between the tail beads and the solvent beads. Lipid bilayers formed from this coarse
grained model have been shown to be in reasonable agreement with MD simulation of the
same models, and to map reasonably well to fluid experimental bilayers[9]. Figure 5 shows
the solution we obtain for this problem. Computing interactions of nanoscale surfaces and
colloidal particles with lipid bilayers are needed to provide a molecular theory based anal-
ysis of surface forces experiments (e.g. surface forces apparatus, atomic force microscope,
optical tweezers, etc) for these systems. This type of calculation is also needed for studying
the interactions of lipid bilayers with proteins.

The computational domain for this problem was 11σ× 5σ× 5σ, and the initial guess
for the density distribution is a previously converged uniform bilayer result. Note that this
case had 37856 nodes in the computational domain and 44 unknowns per node for a total
of 1.66×106 unknowns in the problem. Algorithm performance is presented as a function
of number of processors only in Table 4. Once again the new algorithms improve both the
performance of the code and provide the ability to solve large problems on smaller parallel
platforms. We find a significant superlinear speed up for this case from 32 to 64 processors.
We were not able to solve this problem using generic Krylov space methods even for the
case of 128 processors where we tried a variety of parameters from solver tolerances to
ILUT fill factors.

6.6 Results Summary

The results presented in this section are quite promising for the new solvers. In particular
there are several observations worth noting.
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#Procs Niter <# Lin iters> Time/Niter T1Proc/T Told/Tnew
Old New Old New (New)

1 9 70 - 88 1 -
2 9 70 - 45 2.0 -
4 9 25 70 290*(8) 26.2 3.4 11.0
8 9 28 70 77 12 7.3 6.4

16 10 33 70 23 6.7 13.1 3.4
32 8 40 70 7.1 3.8 23.2 1.9
64 9 46 69 2.8 2.2 40.0 1.3

128 9 58 69 1.4 1.8 49.0 0.8
∆x Niter <# Lin iters> Time/Niter T/T∆x=σ/10 Told/Tnew

Old New Old New (New)
σ/10 9 58 69 1.4 1.8 1 0.8
σ/20 10 55 69 28.9 13.1 7.3 2.2
σ/30 9 57 70 1580* (7) 62.3 34.6 25
Nseg Niter <# Lin iters> Time/Niter T/TNseg=10 Told/Tnew

Old New Old New (New)
10 8 40 70 7.1 3.7 1 1.9
20 8 48 69 21.7 8.9 2.4 2.4
40 8 62 70 58.7 15.1 4.1 3.9
80 7 93 68 257.4 30.9 8.4 8.3

Table 3. Results for a 2D polymer problem. The top part of
the table shows scaling with number of processors. The middle
part of the table shows scaling with mesh density. The bottom
section of the table shows scaling with polymer chain length. The
column descriptions can be found in the caption of Table 1. All
data in the upper part of the table were generated with a mesh
spacing of ∆x = σ/10 and for polymer chains of length Nseg =
10 . All data in middle part of the table were generated on 128
processors for polymer chains of length Nseg = 10. All data in the
bottom part of the table were generated on 32 processors with ∆x =
σ/10. The data with an * indicates that complete convergence was
not obtained and timings are extrapolated based on the number of
completed nonlinear iterations in the parenthesis.
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Figure 5. One slice (at y = 0) through a 3-dimensional computa-
tional volume. The color contours show density (ρσ3) distributions
for lipid tail beads (A), lipid head beads (B), and solvent (C) for a
lipid bilayer assembly sandwiched between planar arrays of large
spheres. The computational domain is 1/4 of the domain shown in
the figure and utilized reflective boundary conditions on all edges.
The legend shows the contour scale for all three figures. Densities
less than ρσ3 = 0.01 are blanked to white.

6.6.1 Memory Use

The new solvers use almost no extra memory for the preconditioners. Furthermore, the
dimension of the implicit problem that GMRES must solve is ten to 100 times smaller.
Since all solvers are using non-restarted GMRES and performing 100 or more iterations,
the GMRES storage cost is O(100n) where n is the dimension of the GMRES problem.
Letting k denote the nonzero count of the global matrix, the memory use for GMRES
vectors in the old solver is comparable to the matrix: from 3k to 10k storage. The ILUT
preconditioner for the old solver requires from 2k to 10k storage. Thus the old solver
requires minimally 6k storage, up to 20k or more. In contrast, the cost of GMRES storage
for the new solvers is 0.1k to 0.01k, and the overall storage is less than 2k with the storage
cost of the matrix being dominant. The overall reduction in memory use for the new solvers
over the old solver is therefore minimally a factor of 5 and sometimes more than a factor
of 20.

6.6.2 Tuning parameters

One difficulty common to preconditioned iterative methods is the presence of tuning param-
eters. This is true for the old solver in that ILUT requires ad hoc parameters to determine
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#Procs <# Lin iters> Time/Niter T32Proc/T
32 93 1510 1
64 93 414 3.6

128 93 190 7.9

Table 4. Results for a 3D polymer test problem. Each case require
10 nonlinear iterations for a solution. For a description of all other
columns see the table 1 caption. All data in the upper part of the
table were generated with a mesh spacing of ∆x = σ/5. Note that
the data flagged with a * is a case where complete convergence
was not obtained. The reported data reflect timings obtained for
one complete nonlinear iteration and the associated linear solution.
The total time was computed assuming a consistent 10 nonlinear
iterations independent of number of processors.

fill, and the user must prescribe these parameter values. Furthermore, as is well-known,
overlapping Schwarz methods tend to lose robustness as the processor count increases,
making the choice of ILUT parameters and the maximum number of GMRES iterations a
function of processor count. In contrast, our new solvers have no tuning parameters and
have identical convergence behavior independent of processor count. This behavior may
be the most important feature to an application user.

6.6.3 Solver scalability in processor count

The processor scalability results for the old solver are quite remarkable. In all cases, once
the number of processors is large enough for the old solver to work at all, the performance
improvement as a function of processor count is superlinear. This behavior is often ob-
served in practice and is a function of two factors: (i) increasing processor count increases
the amount of cache memory and, for a fixed size problem, reduces the working data set on
a processor and (ii) as processor count increases, the subdomains for overlapping Schwarz
decrease in size, resulting in smaller ILUT factors and less work per iteration, even though
the number of iterations increases. Some of the new solvers scalability results are also su-
perlinear, due to factor (i) above. However, since the new solvers are already very efficient
in serial cost and apply GMRES to a much smaller problem, there is much less work to
distribute as processor counts increase. In effect, the new solvers cannot benefit as much as
the old solver from large processor counts for the same global problem. However, the new
solvers scale quite well and, because of their low memory usage, can be effective using far
fewer processors and can solver much larger problems than the old solver.
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6.6.4 Scalability in mesh density and chain length

Our new solvers are not invariant under mesh density changes, but nearly so. In fact,
except for the coarsest mesh, the number of solver iterations remains nearly constant as the
mesh density increases. The old solver iteration count also remains fixed as mesh density
increases. However, the overall cost of the old solver grows much faster than the new
solvers.

For polymer problems, our new solver has constant iteration count as the chain size
increases. Furthermore, the cost of the solver grows approximately linearly with the length
of the chain. Again, this is a marked improvement over the old solver.

7 Conclusions

In this article we have presented a general mathematical framework for describing Fluid-
DFT problems and solving them using a new family of segregated Schur complement
solvers. By viewing Fluid-DFTs from a segregated variable perspective we obtain a rich
structure that can be exploited in the development of low-cost, robust, scalable solution
methods. We have shown that this approach is very effective for two major classes of
Fluid-DFTs, and is very promising for other classes as well. The improvement in solution
time, robustness and memory use opens the door to easy solution of previously intractable
problems and broadens the scope of applicability for real-space Fluid-DFT methods.

Although our new solvers are faster and require much less memory than the old solver,
perhaps most important is the fact that no tuning parameters are required. Since most
problems of interest require the use of hundreds of processors and run for many hours, this
fact makes use of Tramonto much easier.
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A Two specific Fluid-DFTs

In this section we present the particulars of the two distinctly different Fluids-DFTs that
we consider explicitly in this paper. The first is used to treat atomic fluids, and in particular
hard sphere systems. The second is a DFT used to treat polymer fluids. We note that
many other kinds of DFTs have been developed as well. In fact this field contains a whole
collection of disparate approaches that must be analyzed individually from the perspective
of optimizing solution algorithms.

A.1 An Atomistic Fluid Model

We first consider the Fundamental Measures Theory DFT (FMT-DFT) that was first devel-
oped by Rosenfeld, and that has been modified by others [27, 28]. This theory specifically
treats hard sphere fluids with other physical effects (e.g. attractions, Coulomb interactions,
and even bond constraints) being treated as a perturbation to the hard sphere FM theory.
The grand free energy functional for a single component fluid is

Ω[{ρ(r})] =
Z

ρ(r)[ln(ρ(r)−1]dr+
Z

Φ({nγ})r. +
Z

ρ(r)[V ext(r)−µ)]dr. (16)

where µ is a constant chemical potential in the case of an equilibrium-DFT, and the set
of nonlocal variables nγ are linear as was defined above in Eq. 5. The complete Euler-
Lagrange equation to be solved is

ln(ρ(r))−V (r)/kT +µ+
Z

∑
γ

∂Φ

∂nγ

(r′)
δnγ(r′)
δρ(r)

dr′ = 0. (17)

and the 2×2 block matrix is

[
−I wγ(r,r′)

∑γ
∂2Φ

∂nγ∂nε
(r) D22(r)

][
∆nγ

∆ρ

]
= −

[
RNL(r)
FEL(r)

]
, (18)

where D22(r) is a diagonal block matrix, and each entry is 1/ρ(r). Typically the FMT-
DFT has four scalar nonlocal variables and two vector nonlocal variables so for a single
component 3D problem, the number of rows in the upper part of the 2× 2 block matrix
will be 10 times the number of rows in the lower part of the block matrix. Thus the size
of the system of equations is dominated by the nonlocal density variables rather than the
primitive densities of interest.
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For completeness we note that the hard sphere free energy density in Rosenfeld’s orig-
inal theory is

Φ({n})=−n0ln(1−n3)+
n1n2

1−n3
−~nV 1 ·~nV 2

1−n3
+

1
24π(1−n3)2

(
n2 −

~nV 2 ·~nV 2

n2

)3

.(19)

A.2 A Polymer Fluid Model

The particular DFT for polymers we will consider was developed by Chandler, McCoy,
and Singer[3], and our formulation is similar to that of Donely and McCoy[4, 15]. This
particular theory is developed by minimization of a free energy functional with respect to
both the density and an effective field variable, U . This effective field variable constrains a
fluid of ideal chains to have the same density profile as the interacting chains of interest in
the real external field V ext . The theory solves simultaneously for critical fields, ρ(r), and
U(r) for each type of monomer segment, α in the system. The two residual equations for
these critical fields are

ρα(r) =
ρb,α

Nα
∑
s∈α

Gs(r)Ginv
s (r)

exp[−βUα(r)]
, α = 1..Nα, (20)

and

Uα(r) = Vα(r)−∑
β

Z
cαβ(r− r′)(ρβ(r′)−ρbβ)dr′, α = 1..Nα. (21)

where Nα is the number of segments of type α, cαβ is the direct correlation function taken
from a liquid state theory for bulk fluids, the sum in Eq.20 is taken over all Ns monomer
segments in the fluid of interest, ρb denotes the homogeneous bulk density far from the
surface, s is a particular segment on the polymer chain of interest, and the G and Ginv

functions are propagator functions that describe chain connectivity. Specifically,

Gs(r) = exp[−βUα(s)(r)]
Z

ωαβ(r− r′)Gs−1(r′)dr′, s = 1..Ns, (22)

and

Ginv
s (r) = exp[−βUα(s)(r)]

Z
ωαβ(r− r′)Ginv

s+1(r
′)dr′, s = 1..Ns. (23)

where ω is a delta function with a range equal to the bond length between segments s and
s−1 of types α and β respectively. We note that for an end bead only the initial field term
is present.

To summarize we have 2Nα critical variables ({ρα} and {Uα}, and 2Ns nonlocal ancil-
lary variables ({G} and {Ginv}). The concrete example we discussed in this paper is for an
18 bead polymer mixed with a single site solvent, where the polymer chain has two types
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of beads on the chain. For this 3 component, 19 segment problem, we have 6 critical field
variables and 38 nonlocal ancillary variables.

This situation is quite extreme with respect to complexity in the integral equations.
If the discrete matrix problem were formed only in terms of the critical variables, the
nested nonlocal variables would result in multidimensional integrals for each Jacobian en-
try. Specifically, for a polymer with Ns segments, an Ns − 1 dimensional integral would
need to be performed. This is clearly out of the question. Thus we form the matrix prob-
lem with each of the nonlocal propagator functions treated as independent variables. The
structure of the resulting 2×2 block matrix is described more fully in Section 4.

37



DISTRIBUTION:

1 M2497
Central Technical Files, 8945-1

2 2497
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 4536

38


